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TRULY NONTRIVIAL GRAPHOIDAL COVERS-I

PURNIMA GUPTA AND RAJESH SINGH

ABSTRACT. A graphoidal cover of a graph G is a collection ¥ of non-
trivial paths (not necessarily open) in G such that every vertex of G
is an internal vertex of at most one path in ¥ and every edge of G is
in exactly one path in W. A graphoidal cover ¥ of G is a truly non-
trivial graphoidal cover (TNT graphoidal cover) of G if every path in ¥
has length greater than 1. A graph G is a truly nontrivial graph (TNT
graph) if it possesses a TNT graphoidal cover. In this paper we intend
to answer the fundamental question “Does every graph possess a TNT
graphoidal cover ?”, raised by Fred Roberts in first author’s thesis re-
port. After exhibiting the fact that not every graph possesses a TNT
graphoidal cover, we could obtain some forbidden structures for a graph
to be a TNT graph. And in the quest to find graphs having a TNT
graphoidal cover, we could identify certain classes of trees and unicyclic
graphs which are TNT graphs.
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1. INTRODUCTION

Throughout we consider only nontrivial, finite undirected graphs with-
out loops and multiple edges. For graph theoretic terminology we refer to
West [19].

A graphoidal cover of a graph G is a collection ¥ of nontrivial paths (not
necessarily open) in G called ¥-edges, such that (GC1) every vertex of G
is an internal vertex of at most one path in ¥ and (GC2) every edge of G
is in exactly one path in W. The set of all graphoidal covers of a graph G is
denoted by G¢ and for a given ¥ € G¢, the ordered pair (G, ¥) is called a
graphoidally covered graph. The set E := E(G) of edges of any graph G is
trivially a graphoidal cover of G.

The concept of graphoidal covers [4] was first introduced by Acharya and
Sampathkumar in 1987 as a close variant of another emerging discrete struc-
ture called semigraphs [17]. Many interesting notions based on the concept
of graphoidal covers like graphoidal covering number [4], graphoidal label-
ing [16], graphoidal signed graphs [15] etc were introduced and are being
studied extensively. In particular, notion of graphoidal covering number of
a graph has attracted many researchers and numerous work is present in
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literature [6-10,14,18]. Acharya and Gupta in 1999 extended the concept of
graphoidal covers to infinite graphs and introduced notion of domination in
graphoidally covered graphs [1-3]. A detailed treatment of graphoidal covers
and graphoidally covered graphs is given in [3,5].

There are three types of vertices that may exist in a graphoidally covered
graph (G, ), viz. black vertex- (vertex which is not an internal vertex
of any W-edge), white vertex (vertex which is not an end-vertex of any
U-edge) and composite vertex (vertex which is an internal vertex to a
U-edge and also an end-vertex to at least one other W-edge).

In Figure 1, we give diagrammatic representation of graphoidally covered
graph (G,V) with ¥ = {Py, P, P5, Py, Ps}, where P, = (v3,v1,v5), Py =
(’03, V2, 1)1), P3 = (1)3, V4, 111), P4 = (03, V5, 1}4), P5 = (7}3, Vg, ’Ul)}. Here (G, \I/)
consists of all the three types of vertices. Vertex vs is a black vertex, vg, vg
are white vertices and v1,v4 and vs are composite vertices.

FIGURE 1. Diagrammatic representation of graphoidally covered
graph (G, ).

For any graph G, the set E of edges (consisting of paths of length one)
is referred to as the trivial graphoidal cover of G. A graphoidal cover ¥
of a graph G containing at least one W-edge of length greater than one is
called a nontrivial graphoidal cover of G.

Definition 1.1. A graphoidal cover ¥ of a graph G is a truly nontrivial
graphoidal cover (or TNT graphoidal cover) of G if every U-edge has
length at least 2.

Definition 1.2. A graph is said to be a truly nontrivial graph (TNT
graph) if it possesses a TNT graphoidal cover.

In Figure 2, we illustrate the above definitions with the help of three
different graphoidal covers ¥y, ¥o, W3 of K4, where

Uy = {(a,b), (bc), (e, d), (d,a),(a,c), (b,d)}
Uy = {(a,c), (a,b,d,a), (b,c,d)}
Uy = {(a,b,c, d), (b, d,a,c)}.

It is easy to see that ¥y is a trivial graphoidal cover of Ky, ¥s is a nontrivial
graphoidal cover of K, and U3 is a truly nontrivial graphoidal cover of Kjy.
Thus K4 is a TNT graph.
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FIGURE 2. Three different graphoidal covers of Kj.

Further the path P, (n > 3) and the cycle C,(n > 3) obviously admit
a TNT graphoidal cover. Also, the graph G = C,, o K; admits a TNT
graphoidal cover. In fact, if we let Cy, = (vo,v1, ...., Un—1,v0) and for each i
take u; to be the pendant vertex adjacent to v;. Then U = {Py, P, ..., P_1}
is a TNT graphoidal cover of C,, 0o K1, where P; = (v;, vit1,u;41) (0 < i <
n — 1 and addition in the suffix is modulo n).

It is known that any nontrivial connected graph of even size has a P
decomposition [11]. If G is 3-regular, then any P3 decomposition of G gives
a TNT graphoidal cover of G.

For any graph G, the graph obtained by subdividing each edge exactly
once is called the subdivision graph of G and is denoted by S(G). If ¥ is
any graphoidal cover of G, then ¥1 = {S(P): P € ¥} is a TNT graphoidal
cover of S(G).

In [12], Fred Roberts raised the following fundamental problem “Does
every graph possess a TNT graphoidal cover ?”. In our quest to answer this
question, we observed that none of the graphoidal covers of star K1 ,(n > 3)
and double star with at least 4 pendant vertices is a truly nontrivial (TNT)
graphoidal cover, which makes us to conclude that not every graph is a TNT
graph. This raises an interesting problem :

Problem 1.3. Which graphs are TNT graphs?

In this paper we attempt to answer this question and in the process es-
tablish some forbidden structures as necessary conditions for a graph to be
a TNT graph. After observing that these conditions are not sufficient for
an arbitrary graph to be a TNT graph, we could identify some classes of
graphs for which the conditions are sufficient as well. Thereafter we consider
a subclass of unicyclic graphs for the existence of TNT graphoidal cover.

Definition 1.4. [19] A caterpillar G is a tree which results in a path graph
when all pendant vertices are removed. Thus vertex set V(G) of caterpillar
G can be partitioned as V(G) = V1 U Va, where (V1) is o diametrical path of
G, every vertex in Va is a pendant vertex in G.

Definition 1.5. In a graph G, the distance between two vertices u and v,
denoted by d(u,v), is the length of the shortest path joining u and v. The
distance between a vertex u and a subset S of G, denoted by d(u,S) is

d(u, S) = min{d(u,v) : v € S}.
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Definition 1.6. A unicyclic graph is a connected graph with exactly one
cycle. The set of all unicyclic graphs is denoted by U. For each G € U, let
Cg denote the unique cycle of G. For each n > 0, let

U, ={G el :dv,Cc) <nYVveV(G)}

Clearly, Up—1 C Uy, for all n € N, hence the chain {U,}n>0 is an ascending
chain of subsets of U.

Definition 1.7. [13] Let G and H be two graphs. The corona G o H is
the graph obtained by taking |V (G)| copies of H and joining the i" vertex
of G to all the vertices in the i copy of H.

Definition 1.8. Splitting a Vertex

Let G be a graph and v € V(G) be any vertex. Let G, be the graph obtained
from G —v by adjoining a pendant vertex to each u in Ng(v). We call Gy, to
be the graph obtained from G by splitting the vertex v. Here Ng(v) denotes
the neighborhood of v in G.

Lemma 1.9. A graph G is a TNT graph if there exists a vertex v € G such
that the graph G, obtained from G by splitting the vertex v is a TNT graph.

Proof. Let v € G be such that G, is a TNT graph. Let Ng(v) = {u1, ..., un}
and v; be the pendant vertex adjoined to u; to obtain G,,. Let ¥, be a TNT
graphoidal cover of G and P, ..., P, be the paths in ¥, containing the edges
ULV, ..., Un Uy respectively. Further let @); be the path in G obtained from
P; by replacing v; by v. Then

U = (\I/v — {Pl, . Pn}) U {Ql, . Qn}
is clearly a TNT graphoidal cover of G. Hence G is a TNT graph. (]

2. TNT GRAPHS

The necessary conditions that we will obtain in this section are motivated
by the fact that no star with more than two pendant vertices and no double
star with more than three pendant vertices is a TNT graph. To simplify the
proofs of the theorems to follow we first give a lemma.

Lemma 2.1. If a vertex v of a graph G supports exactly two pendant vertices
(say) v1 and vy, then (vi,v,v2) € ¥ for any TNT graphoidal cover U of G.

Proof. Suppose on the contrary there exists a TNT graphoidal cover ¥ of
G such that (v1,v,v9) ¢ U. Let P be the ¥-edge containing v1v. Obviously
as [(P) > 1, v is an internal vertex of P and hence must be an end vertex of
the U-edge @ containing vov. But then @ = (v, v) is a path of length one,
a contradiction to the fact that ¥ is a TNT graphoidal cover. (]

Theorem 2.2. If a graph G is a TNT graph, then

(A) no vertex in G supports more than two pendant vertices,

(B) every path between any two support vertices u and v, having two
pendant neighbors each, must contain a vertex which is not a support
and

(C) e(C) < U(C) for each cycle C in G, where e(C) is the number of
pendant vertices in G having their support on C and I(C) is the
length of C.
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Proof. Let G be a TNT graph and ¥ be a TNT graphoidal cover of G. Sup-
pose (A) does not hold i.e., there exists a support vertex u having r(> 3)
pendant neighbors vy, ve, ..., v,. Then at most one of vou, v3u, ..., v,u can lie
on the P-edge containing viu, whence (G, ¥) has at least r — 2 paths of
length one, a contradiction. Hence (A) holds.

Suppose (B) does not hold and let a path P between two support vertices
u and v with w1, ue and v1, vy as their respective pendant neighbors be such
that every vertex in V(P) — {u, v} is a support to exactly one pendant ver-
tex. Let P = (u = x,21, ..., Tk_1,2 = v) and for every i (1 <1i <k —1),
y; be the pendant neighbor of z;. By Lemma 2.1, Py = (u1,x0,u2) and
Py, = (v1, g, v2) are in U. Since zg is internal to Py, it must be an end ver-
tex of the W-edge P; containing the edge zgx1. Again P; must be equal to
(0, 21,y1). By similar arguments we obtain that for each j (2 < j < k—1),
Pj = (xj_1,2j,y;) is in . Since x_; is internal to P;_; and zy, is internal
to Py, (xg—1, k) must be in ¥, a contradiction. Thus (B) holds.

Finally to prove (C), let G have a cycle C such that e(C) £ [(C'). Then
(A) and (B) imply that exactly one vertex in V(C) is a support to two
pendant vertices and every other vertex of V(C) is a support to exactly
one pendant vertex. Let C = (ug,u1,...,Un_1,up) with ug being support
to two pendant vertices (say) w; and we and every other support vertex
u; have exactly one pendant neighbor (say) v;, where 1 < ¢ < n — 1. By
Lemma 2.1 Ry = (w1, ug, w2) must be in W. Since ug is an internal vertex
of Ry, it is an end vertex of the U-edge R; containing the edge upu; of G.
Obviously, R1 = (ug, u1,v1). By similar arguments R; = (u;_1,u;,v;) is in
U, where 2 < j <n —1,. Now as ug is internal to Py and u,_1 is internal
to Rn—1, (uo, up—1) must be in ¥, a contradiction. Hence e(C) < I(C) and
(C) holds. O

Remark 2.3. It follows from the proof of Theorem 2.2 that if the graph G
has a vertex supporting r(> 3) pendant vertices, then every graphoidal cover
U of G has at least (r — 2) paths of length one.

Corollary 2.4. If a graph G possesses a TNT graphoidal cover, then there
cannot exist any pair of adjacent support vertices having two pendant neigh-
bors each.

Let F denote the family of graphs which satisfy conditions (A), (B) and
(C) of Theorem 2.2. Trivially every TNT graph is a member of F. Is the
converse true 7 The graph G in Figure 3 belongs to F and yet it does not
possess any TNT graphoidal cover.

Thus we conclude that being in F is not sufficient for a graph to be a
TNT graph. It leads to the question that “Are there graphs in F which are
TNT graphs ?”. In our attempt to answer this question we could prove that

(1) a caterpillar which belongs to F is a TNT graph and
(2) a unicyclic graph G € U; is a TNT graph if G € F.

Now we start with the proof of our first assertion. To simplify the proof,

we first give a special class of caterpillars which are TNT graphs.
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FI1GURE 3. Example of a graph in F which is not a TNT graph.

Lemma 2.5. A caterpillar G with mazimum degree A(G) < 3 is a TNT
graph if G has a vertex of degree 2.

Proof. Since G is a caterpillar, the vertex set V(G) can be partitioned
into subsets V; and Vs, where (V1) = (ug,u1,ug, ..., uq_1,uq) is a diamet-
rical path of G and every vertex in V5 is a pendant vertex in G. Let
S = {uwiy, Uiy, ..., ui, } be the set consisting of all vertices of degree 3 in
Vi. Without loss in generality, assume that i, > i; whenever p > q. Let
zi; € V5 be the pendant neighbor of the support vertex Wij, where 1 < j < s.
Set u;, = up and w;,, = ugq. Since G has a vertex of degree 2, there ex-
ists a vertex u, with d(u,) = 2, where r lies between 45 and ixy; for some
k(0 <k <s). Let Pj be uj;-2;;, path for j =0,1,....k =1, Q be u;,-u;,,,
path (u, € V(Q)) and R; be z;;-u;,,, path for j =k + 1,k +2,...;s. It is
straightforward to check that length of each P; , @ and R; is greater than
one and that

U= {P(]apla "-7Pk—1aQaRk+1aRk+23 "'7Rs}
is a TNT graphoidal cover of G. ]

Theorem 2.6. Let G be a caterpillar. Then G is a TNT graph if and only
ifG e F.

Proof. If G is a TNT graph, then by Theorem 2.2 G € F. For the con-
verse, suppose G € F. Partition the vertex set V(G) into V; and V3, where
(V1) = (ug, u1,ug,...,uq_1,uq) is a diametrical path of G and every vertex
in V4 is a pendant vertex in G. Let wq, wo, ..., w,, be support vertices having
two pendant neighbors each. Let wg = up and w41 = ug and for each
j (0 <j <m), P be the wj-w;j;1 path and @Q; be the set of pendant neigh-
bors of vertices in V(P;) — {w;}.

Consider the subcaterpillars Ty, T1, ..., Tr, of G, where T; = (V(P;) U Q;)
for j = 0,1,...,m. Since G € F, for each j, the caterpillar T} satisfies the
conditions of Lemma 2.5, therefore possesses a TNT graphoidal cover (say)
;. Then the collection

U= U;nzo‘l’j
is a TNT graphoidal cover of G. O

We have characterized caterpillars for the existence of the TNT graphoidal
cover, but in general for any arbitrary tree, the problem remains open.

Problem 2.7. Characterize trees which possess a TNT graphoidal cover.
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Unicyclic Graphs

Now we prove our second statement that being in F is necessary as well as
sufficient for a unicyclic graph in U; to be a TNT graph.

Theorem 2.8. Let G € Uy, then G is a TNT graph if and only if G € F.

Proof. Since G is a TNT graph, by Theorem 2.2 G € F. Conversely, sup-
pose G € F and let C' = (uq,us,....un, u1) be the unique cycle of G. Now
G € F implies that 2 < d(u) < 4 for each u € V(C), hence we can partition
V(C) into three subsets Va, V3 and Vy, where V; = {u € V(C) : d(u) = i}
for i = 2,3,4. We have two possibilities:

Case 1: |[V4| =0

If V3 = ¢ then G is a cycle and is therefore a TNT graph. Let V3 =
{wiy, wiy, ..., i, } Where 4, > iy whenever p > ¢ and 4,41 = 41. With no loss
in generality, we assume that u;, = uy. For each j, let w;; be the pendant
neighbor of w;;. Then ¥ = U, P;, where P; = (Wijs Wigy Uiz 1y ey Wigyy) 18
a TNT graphoidal cover of G and we are through.

Case 2: |V4| > 1

Let Vi = {u;;, Wiy, ..., i, } where i, > i, whenever p > ¢ and u;,,, = u;,.
Now for each j (1 < j < m), let z; and y; be pendant neighbors of u;,
and let P; be the u;;-u;, , path (possibly cycle in case [V4| = 1) such that
V(Pj) NVy = {ui;,ui,,, }. Let

Sj = NIV(P)) = {uijsuig ] = 1,2, ..om
where Tpm41 = T1, Ym+1 = Y1-

If |V4| = 1, then < S; > is a unicyclic graph in which a vertex is sup-
port to at most one vertex and at least two vertices are of degree three.
Then < Sj >y, is a caterpillar belonging to F, whence by Theorem 2.6
< Sj >y, is a TNT graph. Therefore by Lemma 1.9 < S;j > possesses a
TNT graphoidal cover ¥;. If |V4] > 1, then < §; > is a caterpillar and
belongs to the family F. Hence by Theorem 2.6 < S; > possesses a TNT
graphoidal cover U;.

In either case for each j, the induced subgraph < S; > possesses a TNT
graphoidal cover ;. Then clearly the collection

U= UM (5 U {(2),ui;,95)})

is a TNT graphoidal cover of G. Hence the theorem follows. O

Having proved that belonging to F is sufficient, as well, for a graph in U
to be a TNT graph. One wonders, what about graphs in Us ? The graph in
Figure 4 is a unicyclic graph in Us N F and yet is not a TNT graph.

This indicates that belonging to F is not sufficient for G € Uy to be a TNT
graph. It is therefore interesting to explore as to what additional conditions
would suffice for a graph G in Us to possess a TNT graphoidal cover. In the
following theorem we answer this question.
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FI1GURE 4. Unicyclic Graph in Us N F , which is not a TNT graph.

Theorem 2.9. Let G € Us be a unicyclic graph with unique cycle C. Then
G is a TNT graph if and only if following conditions hold:

(a) GeF

(b) |N*(u)| <2V ueV(C)

(©) Xueviey IN* (W) <n
where for any w € V(C), N*(u) = {v € N(u) : d(u) =1 or 3} and n is the
length of the cycle C.

To prove this theorem, we will first define some terminologies and obtain
a subgraph H of GG such that H € U;. Thereafter we prove a lemma, which
together with Theorem 2.8 proves the above theorem.

Let G € Uy be a unicyclic graph with unique cycle C. Partition the set
D ={v e V(Q) : d(v,C) =1} into subsets D1, Dy, D3 and D,, where

D;={veD : dlv)=i}i=1,2,3 and
Dy={veD : dw)>4}.

For each w € Ds, let xy,,y,, be pendant neighbors of w. Also, for each w €
Doy, let N(w) = {2y, Ty}, where z,, € V(C') and x,, is the pendant neighbor
of w. Let Q1 = {(xw,w,yw) : w € D3} and Q2 = {(zw,w,xy) : w € Da}.
Further let P» denote the set of all pendant vertices at distance 2 from C.
For each u € V(C), N*(u) = N(u) N (D1 U D3). Let Hg = G — (P, U Ds).
The subgraph Hg of G, clearly, belongs to U;.

Lemma 2.10. Let G € Uy and C be its unique cycle. Then G is a TNT
graph if and only if the subgraph Hg of G is a TNT graph.

Proof. Suppose GG is a TNT graph and let gg be the set of all TNT graphoidal
covers of G. By Lemma 2.1 Q1 C ¥ for all ¥ € gg. We will show that there
exists @ € gg such that Q2 C ®. Let, if possible, Q2 € ¥ for any ¥ € gg
and ¥y € gg be such that |¥g N Q2| is maximum. Since Q2 € Py, there
exists u € Dy such that (z,,u,z,) ¢ ¥. Further as ¥y € gg, there exists a
path P € ¥ such that x, is an end vertex of P and u, z, are internal vertices
of P. Let P = (xy, u, 2y, P1, .-, Pk)- Since z, € V(C) and N(z,)NV(C) = 2,
there exists a Wg-edge @ = (g1, 92, .-, Gr, 24) ¢ Q2 With z, as one of its end
vertex and ¢, € N(z,) NV(C) as its internal vertex. Let P’ = (xy,u, z,)
and Q" = (q1,42, -+, @rs 2us P15 -+, Pk)- Then Uy = (Yo U{P’,Q'}) — {P,Q} is
a TNT graphoidal cover of G such that

(U1 N Q2| > [¥oNQ2,
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contradicting the maximality of ¥g. Hence there exists & € gg such that
@2 C ®. Now for the subgraph Hg of G, @* = & — (Q1 U Q2) is a TNT
graphoidal cover of Hg. Therefore Hg is a TNT graph.

Conversely, let Hg be a TNT graph and ®* be the TNT graphoidal cover
of Hg. Then by definition of Hg. the collection ® = @*UQ1 U4 is a TNT
graphoidal of G. Hence the lemma. O

Now we come back to our main theorem.

Proof. (Theorem 2.9) Suppose G is a TNT graph. By Theorem 2.2, G € F
and (a) holds. Also, by Lemma 2.10, H is a TNT graph and hence from
Theorem 2.9, H € F. Further, from the definition of H, every vertex of
G in Dy U D3 is a pendant vertex in H, whence |[N*(u)| = eg(u) for each
u € V(C), where eg(u) denotes the number of pendant neighbors of v in
H. Since H € F, we must have |[N*(u)| = eg(u) <2V u € V(C) and hence
(b) holds. Also, 3, cy ¢y IN*(u)| = Xuev () er(u) = en(C) < n. Thus (c)
holds.

Conversely, suppose (a), (b) and (c) hold. Then under the hypothesis,
H € F and e(H) < n. By Theorem 2.8, H is a TNT graph and hence, by
Lemma 2.10, G is a TNT graph. O

Thus we have characterized unicyclic graphs in Uy for the existence of
TNT graphoidal cover, but in general the problem of characterizing unicyclic
graphs in U, for any positive integer n > 3 appear quite challenging. Also,
one may consider other classes of graphs for the existence of TNT graphoidal
covers.

Problem 2.11. Characterize unicyclic graphs in U, (n > 3) which are TNT
graphs.
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